# javascript多边形计算库jsclipper的用法 {#javascript多边形计算库jsclipper的用法}
本文讲述javascript多边形计算库jsclipper的用法。jsclipper和同类库比较,功能支持上更完善,且处理效率高,是前端处理多边形计算的首选方案,支持的计算包括多边形的并集、交集、差集、异或、面积、周长等。
# 1. jsclipper涉及的基本概念 {#_1-jsclipper涉及的基本概念}
jsclipper库涉及的基本概念或术语详见文档Clipper库中文文档详解 (opens new window)。
# 1.1 多边形路径描述规则 {#_1-1-多边形路径描述规则}
多边形的路径定义需要严格遵守如下规则,才能准确描述一个多边形:
- 顺时针
按顺时针方向列出路径的顶点。 - 逆时针
按逆时针方向列出路径的顶点。
# 1.2 多边形填充规则 {#_1-2-多边形填充规则}
# 1.2.1 填充规则的定义 {#_1-2-1-填充规则的定义}
因为1
个多边形可以由多组
路径共同描述(如var subj_paths = [[{X:10,Y:10},{X:110,Y:10},{X:110,Y:110},{X:10,Y:110}], [{X:20,Y:20},{X:20,Y:100},{X:100,Y:100},{X:100,Y:20}]];
),所以多边形可以非常复杂。那么多边形填充规则
的意义就是为了描述哪些区域是多边形区域的内部
,哪些区域是多边形区域的外部
。
# 1.2.2 填充规则的分类 {#_1-2-2-填充规则的分类}
jsclipper中支持4种填充规则:
- Even-Odd
奇数次计数的部分被填充,偶数次的部分不填充。 - Non-Zero 所有的非零次计数部分都被填充。
- Positive:所有计数大于零的部分被填充。
- Negative:所有计数小于零的被填充。
# 1.2.3 填充规则计数的定义 {#_1-2-3-填充规则计数的定义}
-
Even-Odd规则中的计数 字面意思是"奇偶"。按该规则,要判断一个点是否在图形内,从该点作任意方向的一条射线,然后检测射线与图形路径的交点的数量。如果结果是奇数则认为点在内部,是偶数则认为点在外部。
可以看出,
Even-Odd规则中的计数
与轮廓的方向无关。 -
其它填充规则中的计数 要判断一个点是否在图形内,从该点作任意方向的一条射线,然后检测射线与图形路径的交点情况。从0开始计数,路径从左向右(顺时针)穿过射线则计数加1,从右向左(逆时针)穿过射线则计数减1。
和Even-Odd填充方式不同
,其他填充准则中计数会依赖于轮廓方向
。
轮廓的方向
是由点集的顺序
决定的。
# 1.2.4 填充规则的效果图 {#_1-2-4-填充规则的效果图}
注意,该参考图中有个错误,在做计数时,左右方向正好弄反了,导致计数错误。
# 2. 基础示例 {#_2-基础示例}
如下示例演示了jsclipper库的基本用法,包括多边形的并集、交集、差集、异或这4种运算。
<html>
<head>
<title>Javascript Clipper Library / Boolean operations / SVG example</title>
<script src="http://jsclipper.sourceforge.net/6.4.2.2/clipper_unminified.js"></script>
<style>
h3{ margin-bottom:2px}
body,th,td,input,legend,fieldset,p,b,button,select,textarea {
font-size: 14px;
font-family: Arial, Helvetica, sans-serif;
}
</style>
<script>
function draw() {
var subj_paths = [[{X:10,Y:10},{X:110,Y:10},{X:110,Y:110},{X:10,Y:110}],
[{X:20,Y:20},{X:20,Y:100},{X:100,Y:100},{X:100,Y:20}]];
var clip_paths = [[{X:50,Y:50},{X:150,Y:50},{X:150,Y:150},{X:50,Y:150}],
[{X:60,Y:60},{X:60,Y:140},{X:140,Y:140},{X:140,Y:60}]];
var scale = 100;
ClipperLib.JS.ScaleUpPaths(subj_paths, scale);
ClipperLib.JS.ScaleUpPaths(clip_paths, scale);
var cpr = new ClipperLib.Clipper();
cpr.AddPaths(subj_paths, ClipperLib.PolyType.ptSubject, true);
cpr.AddPaths(clip_paths, ClipperLib.PolyType.ptClip, true);
var subject_fillType = ClipperLib.PolyFillType.pftNonZero;
var clip_fillType = ClipperLib.PolyFillType.pftNonZero;
var clipTypes = [ClipperLib.ClipType.ctUnion, ClipperLib.ClipType.ctDifference, ClipperLib.ClipType.ctXor, ClipperLib.ClipType.ctIntersection];
var clipTypesTexts = "Union, Difference, Xor, Intersection";
var solution_paths, svg, cont = document.getElementById('svgcontainer');
var i;
for(i = 0; i < clipTypes.length; i++) {
solution_paths = new ClipperLib.Paths();
console.log("运算前: ", JSON.stringify(solution_paths));
cpr.Execute(clipTypes[i], solution_paths, subject_fillType, clip_fillType);
console.log("运算后: ", JSON.stringify(solution_paths));
svg = '<svg style="margin-top:10px; margin-right:10px;margin-bottom:10px;background-color:#dddddd" width="160" height="160">';
svg += '<path stroke="black" fill="yellow" stroke-width="2" d="' + paths2string(solution_paths, scale) + '"/>';
svg += '</svg>';
cont.innerHTML += svg;
}
cont.innerHTML += "<br>" + clipTypesTexts;
}
// Converts Paths to SVG path string
// and scales down the coordinates
function paths2string (paths, scale) {
var svgpath = "", i, j;
if (!scale) scale = 1;
for(i = 0; i < paths.length; i++) {
for(j = 0; j < paths[i].length; j++){
if (!j) svgpath += "M";
else svgpath += "L";
svgpath += (paths[i][j].X / scale) + ", " + (paths[i][j].Y / scale);
}
svgpath += "Z";
}
if (svgpath=="") svgpath = "M0,0";
return svgpath;
}
</script>
</head>
<body onload="draw()">
<div id="svgcontainer"></div>
</body>
</html>
运算结果如下图:
如上代码中的cpr.Execute
方法执行完运算操作后,将运算生成的多边形路径信息写入变量solution_paths
。控制台打印信息如下:
运算前: []
运算后: [[{"X":11000,"Y":5000},{"X":15000,"Y":5000},{"X":15000,"Y":15000},{"X":5000,"Y":15000},{"X":5000,"Y":11000},{"X":1000,"Y":11000},{"X":1000,"Y":1000},{"X":11000,"Y":1000}],[{"X":11000,"Y":6000},{"X":11000,"Y":11000},{"X":6000,"Y":11000},{"X":6000,"Y":14000},{"X":14000,"Y":14000},{"X":14000,"Y":6000}],[{"X":2000,"Y":2000},{"X":2000,"Y":10000},{"X":5000,"Y":10000},{"X":5000,"Y":5000},{"X":10000,"Y":5000},{"X":10000,"Y":2000}],[{"X":6000,"Y":6000},{"X":6000,"Y":10000},{"X":10000,"Y":10000},{"X":10000,"Y":6000}]]
运算前: []
运算后: [[{"X":11000,"Y":5000},{"X":10000,"Y":5000},{"X":10000,"Y":2000},{"X":2000,"Y":2000},{"X":2000,"Y":10000},{"X":5000,"Y":10000},{"X":5000,"Y":11000},{"X":1000,"Y":11000},{"X":1000,"Y":1000},{"X":11000,"Y":1000}],[{"X":11000,"Y":11000},{"X":6000,"Y":11000},{"X":6000,"Y":10000},{"X":10000,"Y":10000},{"X":10000,"Y":6000},{"X":11000,"Y":6000}]]
运算前: []
运算后: [[{"X":15000,"Y":15000},{"X":5000,"Y":15000},{"X":5000,"Y":11000},{"X":6000,"Y":11000},{"X":6000,"Y":10000},{"X":10000,"Y":10000},{"X":10000,"Y":6000},{"X":11000,"Y":6000},{"X":11000,"Y":5000},{"X":15000,"Y":5000}],[{"X":11000,"Y":6000},{"X":11000,"Y":11000},{"X":6000,"Y":11000},{"X":6000,"Y":14000},{"X":14000,"Y":14000},{"X":14000,"Y":6000}],[{"X":11000,"Y":5000},{"X":10000,"Y":5000},{"X":10000,"Y":6000},{"X":6000,"Y":6000},{"X":6000,"Y":10000},{"X":5000,"Y":10000},{"X":5000,"Y":11000},{"X":1000,"Y":11000},{"X":1000,"Y":1000},{"X":11000,"Y":1000}],[{"X":2000,"Y":2000},{"X":2000,"Y":10000},{"X":5000,"Y":10000},{"X":5000,"Y":5000},{"X":10000,"Y":5000},{"X":10000,"Y":2000}]]
运算前: []
运算后: [[{"X":6000,"Y":11000},{"X":5000,"Y":11000},{"X":5000,"Y":10000},{"X":6000,"Y":10000}],[{"X":11000,"Y":6000},{"X":10000,"Y":6000},{"X":10000,"Y":5000},{"X":11000,"Y":5000}]]
若想了解该示例的详细教程,请前往JavaScript-Clipper.js (opens new window)
# 3. 求面积示例 {#_3-求面积示例}
如下示例演示了如何求1个多边形的面积,以及多个多边形并集的面积。
面积有正、负之分,若以顺时针方向描述顶点路径,则面积为正,若以逆时针方向描述顶点路径,则面积为负。
/**
测试获取多边形面积
*/
function testPolygonArea(){
// path1的面积为400
var path1 = [{X:0,Y:0}, {X:20, Y:0}, {X:20,Y:20}, {X:0, Y:20}];
// path2的面积为10000
var path2 = [{X:150,Y:150},{X:50,Y:150},{X:50,Y:50},{X:150,Y:50}];
// 和path1描述的是同一个路径,只是定点的排列顺序不同
var path1_same = [{X:0, Y:20}, {X:20,Y:20}, {X:20, Y:0}, {X:0,Y:0}];
var area = ClipperLib.JS.AreaOfPolygons([path1]);
console.log("path1的面积", area);
// 因为path1_same以逆时针方向描述顶点, 所以面积为负数
area = ClipperLib.JS.AreaOfPolygons([path1_same]);
console.log("path1_same的面积", area);
// path1的面积+path1的面积,即path1面积的2倍
area = ClipperLib.JS.AreaOfPolygons([path1, path1]);
console.log("path1的面积+path1的面积", area);
// "path1和path1的并集"的面积
area = ClipperLib.JS.AreaOfPolygons(getUnionPaths([path1], [path1]));
console.log("path1和path1的并集的面积", area);
// "path1和path1_same的并集"的面积,可知顶点排列顺序不同(当然无论怎么描述,必须要遵守基本准则: 要么顺时针,要么逆时针),并没有影响并集计算的正确性
area = ClipperLib.JS.AreaOfPolygons(getUnionPaths([path1], [path1_same]));
console.log("path1和path1_same的并集的面积", area);
// "path1和path2的并集"的面积
area = ClipperLib.JS.AreaOfPolygons(getUnionPaths([path1], [path2]));
console.log("path1和path2的并集的面积", area);
// "path1和path2的并集"的面积
area = ClipperLib.JS.AreaOfPolygons(getUnionPaths(getUnionPaths([path1], [path2]), [path1_same]));
console.log("path1和path2的并集的面积", area);
}
/**
获取2个多边形的并集的路径:
注意, path1和path2都是二维数组
*/
function getUnionPaths(path1, path2){
var cpr = new ClipperLib.Clipper();
// 添加裁剪路径
cpr.AddPaths(path1, ClipperLib.PolyType.ptSubject, true);
cpr.AddPaths(path2, ClipperLib.PolyType.ptClip, true);
// 用于保存运算结果
unionPaths = new ClipperLib.Paths();
// 执行运算
cpr.Execute(ClipperLib.ClipType.ctUnion, unionPaths, ClipperLib.PolyFillType.pftEvenOdd, ClipperLib.PolyFillType.pftEvenOdd);
console.log("获取2个多边形的并集的路径, path1:", JSON.stringify(path1));
console.log("获取2个多边形的并集的路径, path2:", JSON.stringify(path2));
console.log("获取2个多边形的并集的路径, 并集路径:", JSON.stringify(unionPaths));
return unionPaths;
}
# 4. 该库可用于cocos creator游戏开发 {#_4-该库可用于cocos-creator游戏开发}
游戏开发中,会经常用到多边形计算,若您是使用cocos creator游戏引擎,则可以使用该库进行多边形计算。