51工具盒子

依楼听风雨
笑看云卷云舒,淡观潮起潮落

Python - 多线程

线程是操作系统调度运算的最小单位,本文记录python使用多线程的方法。

线程简介 {#线程简介}

什么是线程 {#什么是线程}

**线程(Thread)**也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。

为什么要使用多线程 {#为什么要使用多线程}

线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄和其他进程应有的状态。

因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性多个线程共享同一个进程的虚拟空间。线程共享的环境包括进程代码段、进程的公有数据等,利用这些共享的数据,线程之间很容易实现通信。

操作系统在创建进程时,必须为该进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程来实现并发比使用多进程的性能要高得多。

总结起来,使用多线程编程具有如下几个优点:

  • 进程之间不能共享内存,但线程之间共享内存非常容易。
  • 操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此,使用多线程来实现多任务并发执行比使用多进程的效率高。
  • Python 语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程。

线程实现 {#线程实现}

threading模块 {#threading模块}

普通创建方式

自定义线程 {#自定义线程}

继承threading.Thread来自定义线程类,其本质是重构Thread类中的run方法

守护线程 {#守护线程}

我们看下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,因此当主进程结束后,子线程也会随之结束。所以当主线程结束后,整个程序就退出了。

我们可以发现,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行。

主线程等待子线程结束 {#主线程等待子线程结束}

为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待子线程执行。

多线程共享全局变量 {#多线程共享全局变量}

线程是进程的执行单元,进程是系统分配资源的最小单位,所以在同一个进程中的多线程是共享资源的。

互斥锁 {#互斥锁}

由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁,即同一时刻允许一个线程执行操作。线程锁用于锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源,就好比你用不同的锁都可以把相同的一个门锁住是一个道理。

由于线程之间是进行随机调度,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,我们也称此为"线程不安全"。

为了方式上面情况的发生,就出现了互斥锁(Lock)

递归锁 {#递归锁}

RLcok类的用法和Lock类一模一样,但它支持嵌套,在多个锁没有释放的时候一般会使用RLcok类。

信号量(BoundedSemaphore类) {#信号量(BoundedSemaphore类}

互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

事件(Event类) {#事件(Event类)}

python线程的事件用于主线程控制其他线程的执行,事件是一个简单的线程同步对象,其主要提供以下几个方法:

  • clear 将flag设置为"False"
  • set 将flag设置为"True"
  • is_set 判断是否设置了flag
  • wait 会一直监听flag,如果没有检测到flag就一直处于阻塞状态

事件处理的机制:全局定义了一个"Flag",当flag值为"False",那么event.wait()就会阻塞,当flag值为"True",那么event.wait()便不再阻塞。

获取线程返回值 {#获取线程返回值}

threading 执行函数后无法执行 return,在需要返回值的函数中有些不方便

解决这个问题的核心思路是创建全局变量,收集线程们运行后返回的结果

输出 1 到 100 的累加和值 5050

由于python的 GIL 机制,使得我们只能使用单核的CPU,同一时间只会有一个线程操作数据,反而不用担心线程安全的问题(不过保险起见还是加个锁的好)

线程池 {#线程池}

简介 {#简介}

系统启动一个新线程的成本是比较高的,因为它涉及与操作系统的交互。在这种情形下,使用线程池可以很好地提升性能,尤其是当程序中需要创建大量生存期很短暂的线程时,更应该考虑使用线程池。

线程池在系统启动时即创建大量空闲的线程,程序只要将一个函数提交给线程池,线程池就会启动一个空闲的线程来执行它。当该函数执行结束后,该线程并不会死亡,而是再次返回到线程池中变成空闲状态,等待执行下一个函数。

此外,使用线程池可以有效地控制系统中并发线程的数量。当系统中包含有大量的并发线程时,会导致系统性能急剧下降,甚至导致 Python 解释器崩溃,而线程池的最大线程数参数可以控制系统中并发线程的数量不超过此数。

Python 线程池的使用 {#Python-线程池的使用}

Python 线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。

如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定。

Exectuor {#Exectuor}
  • Exectuor 提供了如下常用方法:
    • submit(fn, *args, **kwargs):将 fn 函数提交给线程池。*args 代表传给 fn 函数的参数,*kwargs 代表以关键字参数的形式为 fn 函数传入参数。
    • map(func, *iterables, timeout=None, chunksize=1):该函数类似于全局函数 map(func, *iterables),只是该函数将会启动多个线程,以异步方式立即对 iterables 执行 map 处理。
    • shutdown(wait=True):关闭线程池。

程序将 task 函数提交(submit)给线程池后,submit 方法会返回一个 Future 对象,Future 类主要用于获取线程任务函数的返回值。由于线程任务会在新线程中以异步方式执行,因此,线程执行的函数相当于一个"将来完成"的任务,所以 Python 使用 Future 来代表。

Future {#Future}
  • Future 提供了如下方法:
  • cancel():取消该 Future 代表的线程任务。如果该任务正在执行,不可取消,则该方法返回 False;否则,程序会取消该任务,并返回 True。
  • cancelled():返回 Future 代表的线程任务是否被成功取消。
  • running():如果该 Future 代表的线程任务正在执行、不可被取消,该方法返回 True。
  • done():如果该 Funture 代表的线程任务被成功取消或执行完成,则该方法返回 True。
  • result(timeout=None):获取该 Future 代表的线程任务最后返回的结果。如果 Future 代表的线程任务还未完成,该方法将会阻塞当前线程,其中 timeout 参数指定最多阻塞多少秒。
  • exception(timeout=None):获取该 Future 代表的线程任务所引发的异常。如果该任务成功完成,没有异常,则该方法返回 None。
  • add_done_callback(fn):为该 Future 代表的线程任务注册一个"回调函数",当该任务成功完成时,程序会自动触发该 fn 函数。

在用完一个线程池后,应该调用该线程池的 shutdown() 方法,该方法将启动线程池的关闭序列。调用 shutdown() 方法后的线程池不再接收新任务,但会将以前所有的已提交任务执行完成。当线程池中的所有任务都执行完成后,该线程池中的所有线程都会死亡。

线程池执行步骤 {#线程池执行步骤}
  1. 调用 ThreadPoolExecutor 类的构造器创建一个线程池。
  2. 定义一个普通函数作为线程任务。
  3. 调用 ThreadPoolExecutor 对象的 submit() 方法来提交线程任务。
  4. 当不想提交任何任务时,调用 ThreadPoolExecutor 对象的 shutdown() 方法来关闭线程池。
示例代码 {#示例代码}

上面程序中,第 13 行代码创建了一个包含两个线程的线程池,接下来的两行代码只要将 action() 函数提交(submit)给线程池,该线程池就会负责启动线程来执行 action() 函数。这种启动线程的方法既优雅,又具有更高的效率。

当程序把 action() 函数提交给线程池时,submit() 方法会返回该任务所对应的 Future 对象,程序立即判断 futurel 的 done() 方法,该方法将会返回 False(表明此时该任务还未完成)。接下来主程序暂停 3 秒,然后判断 future2 的 done() 方法,如果此时该任务已经完成,那么该方法将会返回 True。

程序最后通过 Future 的 result() 方法来获取两个异步任务返回的结果。

当程序使用 Future 的 result() 方法来获取结果时,该方法会阻塞当前线程,如果没有指定 timeout 参数,当前线程将一直处于阻塞状态,直到 Future 代表的任务返回。

获取执行结果 {#获取执行结果}

前面程序调用了 Future 的 result() 方法来获取线程任务的运回值,但该方法会阻塞当前主线程,只有等到钱程任务完成后,result() 方法的阻塞才会被解除。

如果程序不希望直接调用 result() 方法阻塞线程,则可通过 Future 的 add_done_callback() 方法来添加回调函数,该回调函数形如 fn(future)。当线程任务完成后,程序会自动触发该回调函数,并将对应的 Future 对象作为参数传给该回调函数。

示例代码 {#示例代码-2}

上面主程序分别为 future1、future2 添加了同一个回调函数,该回调函数会在线程任务结束时获取其返回值。

主程序的最后一行代码打印了一条横线。由于程序并未直接调用 future1、future2 的 result() 方法,因此主线程不会被阻塞,可以立即看到输出主线程打印出的横线。接下来将会看到两个新线程并发执行,当线程任务执行完成后,get_result() 函数被触发,输出线程任务的返回值。

另外,由于线程池实现了上下文管理协议(Context Manage Protocol),因此,程序可以使用 with 语句来管理线程池,这样即可避免手动关闭线程池,如上面的程序所示。

map {#map}

Exectuor 还提供了一个 map(func, *iterables, timeout=None, chunksize=1) 方法,该方法的功能类似于全局函数 map(),区别在于线程池的 map() 方法会为 iterables 的每个元素启动一个线程,以并发方式来执行 func 函数。这种方式相当于启动 len(iterables) 个线程,井收集每个线程的执行结果。

上面程序使用 map() 方法来启动 3 个线程(该程序的线程池包含 4 个线程,如果继续使用只包含两个线程的线程池,此时将有一个任务处于等待状态,必须等其中一个任务完成,线程空闲出来才会获得执行的机会),map() 方法的返回值将会收集每个线程任务的返回结果。

GIL(Global Interpreter Lock)全局解释器锁 {#GIL(Global-Interpreter-Lock)全局解释器锁}

在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少核,同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。

GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是"通行证",并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操作cpu,只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的。

Python多线程的工作过程:
python在使用多线程的时候,调用的是c语言的原生线程。

  • 拿到公共数据
  • 申请gil
  • python解释器调用os原生线程
  • os操作cpu执行运算
  • 当该线程执行时间到后,无论运算是否已经执行完,gil都被要求释放
  • 进而由其他进程重复上面的过程
  • 等其他进程执行完后,又会切换到之前的线程(从他记录的上下文继续执行),整个过程是每个线程执行自己的运算,当执行时间到就进行切换(context switch)。

python针对不同类型的代码执行效率也是不同的:

1、CPU密集型代码(各种循环处理、计算等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等涉及文件读写的操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

使用建议?

python下想要充分利用多核CPU,就用多进程。因为每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

GIL在python中的版本差异:

1、在python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100时进行释放。(ticks可以看作是python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过sys.setcheckinterval 来调整)。而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
2、在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

参考资料 {#参考资料}



文章链接:
https://www.zywvvd.com/notes/coding/python/python-threading/python-threading/

赞(0)
未经允许不得转载:工具盒子 » Python - 多线程