51工具盒子

依楼听风雨
笑看云卷云舒,淡观潮起潮落

OpenSSL-CVE漏洞分析

0x00 前言


OpenSSL官方在7月9日发布了编号为 CVE-2015-1793 的交叉证书验证绕过漏洞,其中主要影响了OpenSSL的1.0.1和1.0.2分支。1.0.0和0.9.8分支不受影响。

360安全研究员au2o3t对该漏洞进行了原理上的分析,确认是一个绕过交叉链类型证书验证的高危漏洞,可以让攻击者构造证书来绕过交叉验证,用来形成诸如"中间人"等形式的攻击。

0x01 漏洞基本原理


直接看最简单的利用方法(利用方法包括但不限于此):

攻击者从一公共可信的 CA (C)处签得一证书 X,并以此证书签发另一证书 V(含对X的交叉引用),那么攻击者发出的证书链 V, R (R为任意证书)对信任 C 的用户将是可信的。

显然用户对 V, R 链的验证会返回失败。

对不支持交叉链认证的老版本来说,验证过程将以失败结束。

对支持交叉认证的版本,则将会尝试构建交叉链 V, X, C,并继续进行验证。

虽然 V, X, C 链能通过可信认证,但会因 X 的用法不包括 CA 而导致验证失败。

但在 openssl-1.0.2c 版本,因在对交叉链的处理中,对最后一个不可信证书位置计数的错误,导致本应对 V, X 记为不可信并验证,错记为了仅对 V 做验证,而没有验证攻击者的证书 X,返回验证成功。

0x02 具体漏洞分析


漏洞代码位于文件:openssl-1.0.2c/crypto/x509/x509_vfy.c

函数:X509_verify_cert() 中

第 392 行:ctx->last_untrusted--;

对问题函数 X509_verify_cert 的简单分析:

( 为方便阅读,仅保留与证书验证强相关的代码,去掉了诸如变量定义、错误处理、资源释放等非主要代码)

问题在于由 <1> 处加入颁发者时及 <2> 处验证(颁发者)后,证书链计数增加,但 最后一个不可信证书位置计数 并未增加, 而在 <4> 处去除过程中 最后一个不可信证书位置计数 额外减少了,导致后面验证过程中少验。

(上述 V, X, C 链中应验 V, X 但少验了 X)

代码分析如下

#!c++
int X509_verify_cert(X509_STORE_CTX *ctx)
{
    // 将 ctx->cert 做为不信任证书压入需验证链  ctx->chain
    // STACK_OF(X509) *chain 将被构造为证书链,并最终送到 internal_verify() 中去验证
    sk_X509_push(ctx->chain,ctx->cert); 
    // 当前链长度(==1)
    num = sk_X509_num(ctx->chain);
     // 取出第 num 个证书
    x = sk_X509_value(ctx->chain, num - 1);
     // 存在不信任链则复制之
    if (ctx->untrusted != NULL
        && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
        X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
         goto end;
    }
     // 预设定的最大链深度(100)
    depth = param->depth;
    // 构造需验证证书链
    for (;;) {
        // 超长退出
        if (depth < num)
            break;
        // 遇自签退出(链顶)
        if (cert_self_signed(x))
            break;
         if (ctx->untrusted != NULL) {
            xtmp = find_issuer(ctx, sktmp, x);
            // 当前证书为不信任颁发者(应需CA标志)颁发
            if (xtmp != NULL) {
                // 则加入需验证链
                if (!sk_X509_push(ctx->chain, xtmp)) {
                    X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
                    goto end;
                }
                CRYPTO_add(&xtmp->references, 1, CRYPTO_LOCK_X509);
                (void)sk_X509_delete_ptr(sktmp, xtmp);
                // 最后一个不可信证书位置计数 自增1
                ctx->last_untrusted++;
                x = xtmp;
                num++;
                continue;
            }
        }
        break;
    }
    do {
        i = sk_X509_num(ctx->chain);
        x = sk_X509_value(ctx->chain, i - 1);
        // 若最顶证书是自签的
        if (cert_self_signed(x)) {
            // 若需验证链长度 == 1
            if (sk_X509_num(ctx->chain) == 1) {
                // 在可信链中查找其颁发者(找自己)
                ok = ctx->get_issuer(&xtmp, ctx, x);
`           // 没找到或不是相同证书
            if ((ok &lt;= 0) || X509_cmp(x, xtmp)) {
                ctx-&gt;error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT;
                ctx-&gt;current_cert = x;
                ctx-&gt;error_depth = i - 1;
                if (ok == 1)
                    X509_free(xtmp);
                bad_chain = 1;
                ok = cb(0, ctx);
                if (!ok)
                    goto end;
            // 找到
            } else {
                X509_free(x);
                x = xtmp;
                // 入到可信链
                (void)sk_X509_set(ctx-&gt;chain, i - 1, x);
                // 最后一个不可信证书位置计数 置0
                ctx-&gt;last_untrusted = 0;
            }
        // 最顶为自签证书 且 证书链长度&gt;1
        } else {
            // 弹出
            chain_ss = sk_X509_pop(ctx-&gt;chain);
            // 最后一个不可信证书位置计数 自减
            ctx-&gt;last_untrusted--;
            num--;
            j--;
            // 保持指向当前最顶证书
            x = sk_X509_value(ctx-&gt;chain, num - 1);
        }
    }
    // &lt;1&gt;
    // 继续构造证书链(加入颁发者)
    for (;;) {
        // 自签退出
        if (cert_self_signed(x))
            break;
        // 在可信链中查找其颁发者
        ok = ctx-&gt;get_issuer(&amp;xtmp, ctx, x);
        // 出错
        if (ok &lt; 0)
            return ok;
        // 没找到
        if (ok == 0)
             break;
        x = xtmp;
        // 将不可信证书的颁发者(证书)加入需验证证书链
        if (!sk_X509_push(ctx-&gt;chain, x)) {
            X509_free(xtmp);
            X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
            return 0;
        }
        num++;
    }
    // &lt;2&gt;
    // 验证 for(;;) 中加入的颁发者链
    i = check_trust(ctx);
    if (i == X509_TRUST_REJECTED)
        goto end;
    retry = 0;
     // &lt;3&gt;
    // 检查交叉链
    if (i != X509_TRUST_TRUSTED
        &amp;&amp; !(ctx-&gt;param-&gt;flags &amp; X509_V_FLAG_TRUSTED_FIRST)
        &amp;&amp; !(ctx-&gt;param-&gt;flags &amp; X509_V_FLAG_NO_ALT_CHAINS)) {
        while (j-- &gt; 1) {
            xtmp2 = sk_X509_value(ctx-&gt;chain, j - 1);
             // 其实得到一个"看似合理"的证书就返回,这里实际上仅仅根据 CN域 查找颁发者
            ok = ctx-&gt;get_issuer(&amp;xtmp, ctx, xtmp2);
            if (ok &lt; 0)
                goto end;
            // 存在交叉链
            if (ok &gt; 0) {
                X509_free(xtmp);
            // 去除交叉链以上部分
            while (num &amp;gt; j) {
                xtmp = sk_X509_pop(ctx-&amp;gt;chain);
                X509_free(xtmp);
                num--;
                // &amp;lt;4&amp;gt;
                // 问题所在
                ctx-&amp;gt;last_untrusted--;
            }
            // &amp;lt;5&amp;gt;
            retry = 1;
            break;
        }
    }
}

} while (retry); ...... ` }


官方的解决方法是在 <5> 处重新计算 最后一个不可信证书位置计数 的值为链长:

ctx->last_untrusted = sk_X509_num(ctx->chain);

并去掉 <4> 处的 最后一个不可信证书位置计数 自减运算(其实去不去掉都无所谓)。 另一个解决办法可以是在 <1> <2> 后,在 <3> 处重置 最后一个不可信证书位置计数,加一行:

ctx->last_untrusted = num;

这样 <4> 处不用删除,而逻辑也是合理并前后一致的。

0x03 漏洞验证


笔者修改了部分代码并做了个Poc 。 修改代码:

#!c++
int X509_verify_cert(X509_STORE_CTX *ctx)
{
    X509 *x, *xtmp, *xtmp2, *chain_ss = NULL;
    int bad_chain = 0;
    X509_VERIFY_PARAM *param = ctx->param;
    int depth, i, ok = 0;
    int num, j, retry;
    int (*cb) (int xok, X509_STORE_CTX *xctx);
    STACK_OF(X509) *sktmp = NULL;
    if (ctx->cert == NULL) {
        X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
        return -1;
    }
`cb = ctx-&gt;verify_cb;

/*

  • first we make sure the chain we are going to build is present and that
  • the first entry is in place */ if (ctx-&gt;chain == NULL) { if (((ctx-&gt;chain = sk_X509_new_null()) == NULL) || (!sk_X509_push(ctx-&gt;chain, ctx-&gt;cert))) { X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); goto end; } CRYPTO_add(&amp;ctx-&gt;cert-&gt;references, 1, CRYPTO_LOCK_X509); ctx-&gt;last_untrusted = 1; }

/* We use a temporary STACK so we can chop and hack at it */ if (ctx-&gt;untrusted != NULL &amp;&amp; (sktmp = sk_X509_dup(ctx-&gt;untrusted)) == NULL) { X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); goto end; }

num = sk_X509_num(ctx-&gt;chain); x = sk_X509_value(ctx-&gt;chain, num - 1); depth = param-&gt;depth;

for (;;) { /* If we have enough, we break / if (depth &lt; num) break; / FIXME: If this happens, we should take * note of it and, if appropriate, use the * X509_V_ERR_CERT_CHAIN_TOO_LONG error code * later. */

/* If we are self signed, we break */
if (cert_self_signed(x))
    break;

/*

  • If asked see if we can find issuer in trusted store first / if (ctx-&amp;gt;param-&amp;gt;flags &amp;amp; X509_V_FLAG_TRUSTED_FIRST) { ok = ctx-&amp;gt;get_issuer(&amp;amp;xtmp, ctx, x); if (ok &amp;lt; 0) return ok; /
    • If successful for now free up cert so it will be picked up
    • again later. */ if (ok &amp;gt; 0) { X509_free(xtmp); break; } }

/* If we were passed a cert chain, use it first / if (ctx-&amp;gt;untrusted != NULL) { xtmp = find_issuer(ctx, sktmp, x); if (xtmp != NULL) { if (!sk_X509_push(ctx-&amp;gt;chain, xtmp)) { X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); goto end; } CRYPTO_add(&amp;amp;xtmp-&amp;gt;references, 1, CRYPTO_LOCK_X509); (void)sk_X509_delete_ptr(sktmp, xtmp); ctx-&amp;gt;last_untrusted++; x = xtmp; num++; / * reparse the full chain for the next one */ continue; } } break;

}

/* Remember how many untrusted certs we have / j = num; /

  • at this point, chain should contain a list of untrusted certificates.
  • We now need to add at least one trusted one, if possible, otherwise we
  • complain. */

do { /* * Examine last certificate in chain and see if it is self signed. / i = sk_X509_num(ctx-&gt;chain); x = sk_X509_value(ctx-&gt;chain, i - 1); if (cert_self_signed(x)) { / we have a self signed certificate / if (sk_X509_num(ctx-&gt;chain) == 1) { / * We have a single self signed certificate: see if we can * find it in the store. We must have an exact match to avoid * possible impersonation. / ok = ctx-&gt;get_issuer(&amp;xtmp, ctx, x); if ((ok &lt;= 0) || X509_cmp(x, xtmp)) { ctx-&gt;error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT; ctx-&gt;current_cert = x; ctx-&gt;error_depth = i - 1; if (ok == 1) X509_free(xtmp); bad_chain = 1; ok = cb(0, ctx); if (!ok) goto end; } else { / * We have a match: replace certificate with store * version so we get any trust settings. / X509_free(x); x = xtmp; (void)sk_X509_set(ctx-&gt;chain, i - 1, x); ctx-&gt;last_untrusted = 0; } } else { / * extract and save self signed certificate for later use / chain_ss = sk_X509_pop(ctx-&gt;chain); ctx-&gt;last_untrusted--; num--; j--; x = sk_X509_value(ctx-&gt;chain, num - 1); } } / We now lookup certs from the certificate store / for (;;) { / If we have enough, we break / if (depth &lt; num) break; / If we are self signed, we break */ if (cert_self_signed(x)) break; ok = ctx-&gt;get_issuer(&amp;xtmp, ctx, x);

    if (ok &amp;lt; 0)
        return ok;
    if (ok == 0)
        break;
    x = xtmp;
    if (!sk_X509_push(ctx-&amp;gt;chain, x)) {
        X509_free(xtmp);
        X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
        return 0;
    }
    num++;
}

/* we now have our chain, lets check it... */ i = check_trust(ctx);

/* If explicitly rejected error */ if (i == X509_TRUST_REJECTED) goto end;

/*

  • If it's not explicitly trusted then check if there is an alternative
  • chain that could be used. We only do this if we haven't already
  • checked via TRUSTED_FIRST and the user hasn't switched off alternate
  • chain checking */ retry = 0;

// &lt;1&gt; //ctx-&gt;last_untrusted = num; if (i != X509_TRUST_TRUSTED &amp;&amp; !(ctx-&gt;param-&gt;flags &amp; X509_V_FLAG_TRUSTED_FIRST) &amp;&amp; !(ctx-&gt;param-&gt;flags &amp; X509_V_FLAG_NO_ALT_CHAINS)) { while (j-- &gt; 1) { xtmp2 = sk_X509_value(ctx-&gt;chain, j - 1); ok = ctx-&gt;get_issuer(&amp;xtmp, ctx, xtmp2); if (ok &lt; 0) goto end; /* Check if we found an alternate chain / if (ok &gt; 0) { / * Free up the found cert we'll add it again later */ X509_free(xtmp);

            /*
             * Dump all the certs above this point - we've found an
             * alternate chain
             */
            while (num &amp;gt; j) {
                xtmp = sk_X509_pop(ctx-&amp;gt;chain);
                X509_free(xtmp);
                num--;
                ctx-&amp;gt;last_untrusted--;
            }
            retry = 1;
            break;
        }
    }
}

} while (retry); ` printf(" num=%d, real-num=%d\n", ctx->last_untrusted, sk_X509_num(ctx->chain) ); /*

  • If not explicitly trusted then indicate error unless it's a single

  • self signed certificate in which case we've indicated an error already

  • and set bad_chain == 1 */ `if (i != X509_TRUST_TRUSTED &amp;&amp; !bad_chain) { if ((chain_ss == NULL) || !ctx-&gt;check_issued(ctx, x, chain_ss)) { if (ctx-&gt;last_untrusted &gt;= num) ctx-&gt;error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY; else ctx-&gt;error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT; ctx-&gt;current_cert = x; } else { sk_X509_push(ctx-&gt;chain, chain_ss); num++; ctx-&gt;last_untrusted = num; ctx-&gt;current_cert = chain_ss; ctx-&gt;error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN; chain_ss = NULL; }

    ctx-&gt;error_depth = num - 1; bad_chain = 1; ok = cb(0, ctx); if (!ok) goto end; } printf(&quot;flag=1\n&quot;); /* We have the chain complete: now we need to check its purpose */ ok = check_chain_extensions(ctx);if (!ok) goto end; printf(&quot;flag=2\n&quot;); /* Check name constraints */ok = check_name_constraints(ctx);

if (!ok) goto end; printf(&quot;flag=3\n&quot;); ok = check_id(ctx);if (!ok) goto end; printf(&quot;flag=4\n&quot;); /* We may as well copy down any DSA parameters that are required */ X509_get_pubkey_parameters(NULL, ctx-&gt;chain);/*

  • Check revocation status: we do this after copying parameters because
  • they may be needed for CRL signature verification. */

ok = ctx-&gt;check_revocation(ctx); if (!ok) goto end; ` printf("flag=5\n"); i = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain, ctx->param->flags); if (i != X509_V_OK) { ctx->error = i; ctx->current_cert = sk_X509_value(ctx->chain, ctx->error_depth); ok = cb(0, ctx); if (!ok) goto end; } printf("flag=6\n"); /* At this point, we have a chain and need to verify it / if (ctx-&gt;verify != NULL) ok = ctx-&gt;verify(ctx); else ok = internal_verify(ctx); if (!ok) goto end; printf("flag=7\n"); #ifndef OPENSSL_NO_RFC3779 / RFC 3779 path validation, now that CRL check has been done / ok = v3_asid_validate_path(ctx); if (!ok) goto end; ok = v3_addr_validate_path(ctx); if (!ok) goto end; #endif printf("flag=8\n"); / If we get this far evaluate policies */ if (!bad_chain && (ctx->param->flags & X509_V_FLAG_POLICY_CHECK)) ok = ctx->check_policy(ctx); if (!ok) goto end; if (0) { end: X509_get_pubkey_parameters(NULL, ctx->chain); } if (sktmp != NULL) sk_X509_free(sktmp); if (chain_ss != NULL) X509_free(chain_ss); printf("ok=%d\n", ok );

return ok; } Poc: ? // //里头的证书文件自己去找一个,这个不提供了 // #include <stdio.h> #include <openssl/crypto.h> #include <openssl/bio.h> #include <openssl/x509.h> #include <openssl/pem.h> STACK_OF(X509) *load_certs_from_file(const char *file) { STACK_OF(X509) *certs; BIO *bio; X509 *x; bio = BIO_new_file( file, "r"); certs = sk_X509_new_null(); do { x = PEM_read_bio_X509(bio, NULL, 0, NULL); sk_X509_push(certs, x); }while( x != NULL ); return certs; } void test(void) { X509 *x = NULL; STACK_OF(X509) *untrusted = NULL; BIO *bio = NULL; X509_STORE_CTX *sctx = NULL; X509_STORE *store = NULL; X509_LOOKUP *lookup = NULL; store = X509_STORE_new(); lookup = X509_STORE_add_lookup( store, X509_LOOKUP_file() ); X509_LOOKUP_load_file(lookup, &quot;roots.pem&quot;, X509_FILETYPE_PEM); untrusted = load_certs_from_file(&quot;untrusted.pem&quot;); bio = BIO_new_file(&quot;bad.pem&quot;, &quot;r&quot;); x = PEM_read_bio_X509(bio, NULL, 0, NULL); sctx = X509_STORE_CTX_new(); X509_STORE_CTX_init(sctx, store, x, untrusted); X509_verify_cert(sctx); } int main(void) { test(); return 0; }


将代码中 X509_verify_cert() 函数加入输出信息如下: 编译,以伪造证书测试,程序输出信息为:

num=1, real-num=3
flag=1
flag=2
flag=3
flag=4
flag=5
flag=6
flag=7
flag=8
ok=1

认证成功 将 <1> 处注释代码去掉,编译,再以伪造证书测试,程序输出信息为:

num=3, real-num=3
flag=1
ok=0

认证失败

0x04 安全建议


建议使用受影响版本(OpenSSL 1.0.2b/1.0.2c 和 OpenSSL 1.0.1n/1.0.1o)的 产品或代码升级OpenSSL到最新版本

赞(1)
未经允许不得转载:工具盒子 » OpenSSL-CVE漏洞分析