51工具盒子

依楼听风雨
笑看云卷云舒,淡观潮起潮落

Kubernetes-监控Kube-Proxy

简介 {#简介}

Kubernetes 架构,Kube-Proxy 是在所有工作负载节点上的。

Kube-Proxy 默认暴露两个端口,10249用于暴露监控指标,在 /metrics 接口吐出 Prometheus 协议的监控数据:

[root@tt-fc-dev01.nj lib]# curl -s http://localhost:10249/metrics | head -n 10
# HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and sent to the audit backend.
# TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
# HELP apiserver_audit_requests_rejected_total [ALPHA] Counter of apiserver requests rejected due to an error in audit logging backend.
# TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total 0
# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 2.5307e-05
go_gc_duration_seconds{quantile="0.25"} 2.8884e-05

10256 端口作为健康检查的端口,使用 /healthz 接口做健康检查,请求之后返回两个时间信息:

[root@tt-fc-dev01.nj lib]# curl -s http://localhost:10256/healthz | jq .
{
  "lastUpdated": "2022-11-09 13:14:35.621317865 +0800 CST m=+4802354.950616250",
  "currentTime": "2022-11-09 13:14:35.621317865 +0800 CST m=+4802354.950616250"
}

所以,我们只要从 http://localhost:10249/metrics 采集监控数据即可。既然是 Prometheus 协议的数据,使用 Categraf 的 input.prometheus 来搞定即可。

Categraf prometheus 插件 {#categraf-prometheus-插件}

配置文件在 conf/input.prometheus/prometheus.toml,把 Kube-Proxy 的地址配置进来即可:

interval = 15
[[instances]]
urls = [
     "http://localhost:10249/metrics"
]
labels = { job="kube-proxy" }

urls 字段配置 endpoint 列表,即所有提供 metrics 数据的接口,我们使用下面的命令做个测试:

[work@tt-fc-dev01.nj categraf]$ ./categraf --test --inputs prometheus | grep kubeproxy_sync_proxy_rules
2022/11/09 13:30:17 main.go:110: I! runner.binarydir: /home/work/go/src/categraf
2022/11/09 13:30:17 main.go:111: I! runner.hostname: tt-fc-dev01.nj
2022/11/09 13:30:17 main.go:112: I! runner.fd_limits: (soft=655360, hard=655360)
2022/11/09 13:30:17 main.go:113: I! runner.vm_limits: (soft=unlimited, hard=unlimited)
2022/11/09 13:30:17 config.go:33: I! tracing disabled
2022/11/09 13:30:17 provider.go:63: I! use input provider: [local]
2022/11/09 13:30:17 agent.go:87: I! agent starting
2022/11/09 13:30:17 metrics_agent.go:93: I! input: local.prometheus started
2022/11/09 13:30:17 prometheus_scrape.go:14: I! prometheus scraping disabled!
2022/11/09 13:30:17 agent.go:98: I! agent started
13:30:17 kubeproxy_sync_proxy_rules_endpoint_changes_pending agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_count agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 319786
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_sum agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 17652.749911909214
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=+Inf 319786
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.001 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.002 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.004 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.008 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.016 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.032 0
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.064 274815
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.128 316616
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.256 319525
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=0.512 319776
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=1.024 319784
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=2.048 319784
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=4.096 319784
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=8.192 319784
13:30:17 kubeproxy_sync_proxy_rules_duration_seconds_bucket agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics le=16.384 319786
13:30:17 kubeproxy_sync_proxy_rules_service_changes_pending agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 0
13:30:17 kubeproxy_sync_proxy_rules_last_queued_timestamp_seconds agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 1.6668536394083393e+09
13:30:17 kubeproxy_sync_proxy_rules_iptables_restore_failures_total agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 0
13:30:17 kubeproxy_sync_proxy_rules_endpoint_changes_total agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 219139
13:30:17 kubeproxy_sync_proxy_rules_last_timestamp_seconds agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 1.6679718066295934e+09
13:30:17 kubeproxy_sync_proxy_rules_service_changes_total agent_hostname=tt-fc-dev01.nj instance=http://localhost:10249/metrics 512372

Kube-Proxy 在 Kubernetes 架构中,负责从 APIServer 同步规则,然后修改 iptables 或 ipvs 配置,同步规则相关的指标就非常关键了,这里我就 grep 了这些指标作为样例。

通过 --test 看到输出了,就说明正常采集到数据了,你有几个工作负载节点,就分别去修改 Categraf 的配置即可。当然,这样做非常直观,只是略麻烦,如果未来扩容新的 Node 节点,也要去修改 Categraf 的采集配置,把 Kube-Proxy 这个 /metrics 地址给加上,如果你是用脚本批量跑的,倒是还可以,如果是手工部署就略麻烦。我们可以把 Categraf 采集器做成 Daemonset,这样就不用担心扩容的问题了,Daemonset 会被自动调度到所有 Node 节点。

Categraf 作为 Daemonset 部署 {#categraf-作为-daemonset-部署}

Categraf 作为 Daemonset 运行,首先要创建一个 namespace,然后相关的 ConfigMap、Daemonset 等都归属这个 namespace。只是监控 Kube-Proxy 的话,Categraf 的配置就只需要主配置 config.toml 和 prometheus.toml,下面我们就实操演示一下。

创建 namespace {#创建-namespace}

[work@tt-fc-dev01.nj categraf]$ kubectl create namespace flashcat
namespace/flashcat created
`[work@tt-fc-dev01.nj categraf]$ kubectl get ns | grep flashcat
flashcat                                 Active   29s
`

创建 ConfigMap {#创建-configmap}

ConfigMap 是用于放置 config.toml 和 prometheus.toml 的内容,我把 yaml 文件也给你准备好了,请保存为 categraf-configmap-v1.yaml

---
kind: ConfigMap
metadata:
  name: categraf-config
apiVersion: v1
data:
  config.toml: |
    [global]
    hostname = "$HOSTNAME"
    interval = 15
    providers = ["local"]
    [writer_opt]
    batch = 2000
    chan_size = 10000
    [[writers]]
    url = "http://10.206.0.16:19000/prometheus/v1/write"
    timeout = 5000
    dial_timeout = 2500
    max_idle_conns_per_host = 100    
---
kind: ConfigMap
metadata:
  name: categraf-input-prometheus
apiVersion: v1
data:
  prometheus.toml: |
    [[instances]]
    urls = ["http://127.0.0.1:10249/metrics"]
    labels = { job="kube-proxy" }    

上面的 10.206.0.16:19000 只是举个例子,请改成你自己的 n9e-server 的地址。当然,如果不想把监控数据推给 Nightingale 也OK,写成其他的时序库(支持 remote write 协议的接口)也可以。hostname = "$HOSTNAME" 这个配置用了 $ 符号,后面创建 Daemonset 的时候会把 HOSTNAME 这个环境变量注入,让 Categraf 自动拿到。

下面我们把 ConfigMap 创建出来:

[work@tt-fc-dev01.nj yamls]$ kubectl apply -f categraf-configmap-v1.yaml -n flashcat
configmap/categraf-config created
configmap/categraf-input-prometheus created
`[work@tt-fc-dev01.nj yamls]$ kubectl get configmap -n flashcat
NAME                        DATA   AGE
categraf-config             1      19s
categraf-input-prometheus   1      19s
kube-root-ca.crt            1      22m
`

创建 Daemonset {#创建-daemonset}

配置文件准备好了,开始创建 Daemonset,注意把 HOSTNAME 环境变量注入进去,yaml 文件如下,你可以保存为 categraf-daemonset-v1.yaml:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  labels:
    app: categraf-daemonset
  name: categraf-daemonset
spec:
  selector:
    matchLabels:
      app: categraf-daemonset
  template:
    metadata:
      labels:
        app: categraf-daemonset
    spec:
      containers:
      - env:
        - name: TZ
          value: Asia/Shanghai
        - name: HOSTNAME
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: spec.nodeName
        - name: HOSTIP
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: status.hostIP
        image: flashcatcloud/categraf:v0.2.18
        imagePullPolicy: IfNotPresent
        name: categraf
        volumeMounts:
        - mountPath: /etc/categraf/conf
          name: categraf-config
        - mountPath: /etc/categraf/conf/input.prometheus
          name: categraf-input-prometheus
      hostNetwork: true
      restartPolicy: Always
      tolerations:
      - effect: NoSchedule
        operator: Exists
      volumes:
      - configMap:
          name: categraf-config
        name: categraf-config
      - configMap:
          name: categraf-input-prometheus
        name: categraf-input-prometheus

apply 一下这个 Daemonset 文件:

[work@tt-fc-dev01.nj yamls]$ kubectl apply -f categraf-daemonset-v1.yaml -n flashcat
daemonset.apps/categraf-daemonset created

\[work@tt-fc-dev01.nj yamls\]$ kubectl get ds -o wide -n flashcat
NAME                 DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE     CONTAINERS   IMAGES                           SELECTOR
categraf-daemonset   6         6         6       6            6           \<none\>          2m20s   categraf     flashcatcloud/categraf:v0.2.17   app=categraf-daemonset

`[work@tt-fc-dev01.nj yamls]$ kubectl get pods -o wide -n flashcat
NAME                       READY   STATUS    RESTARTS   AGE     IP            NODE          NOMINATED NODE   READINESS GATES
categraf-daemonset-4qlt9   1/1     Running   0          2m10s   10.206.0.7    10.206.0.7    <none>           <none>
categraf-daemonset-s9bk2   1/1     Running   0          2m10s   10.206.0.11   10.206.0.11   <none>           <none>
categraf-daemonset-w77lt   1/1     Running   0          2m10s   10.206.16.3   10.206.16.3   <none>           <none>
categraf-daemonset-xgwf5   1/1     Running   0          2m10s   10.206.0.16   10.206.0.16   <none>           <none>
categraf-daemonset-z9rk5   1/1     Running   0          2m10s   10.206.16.8   10.206.16.8   <none>           <none>
categraf-daemonset-zdp8v   1/1     Running   0          2m10s   10.206.0.17   10.206.0.17   <none>           <none>
`

看起来一切正常,我们去 Nightingale 查一下相关监控指标,看看有了没有:

监控指标说明 {#监控指标说明}

Kube-Proxy 的指标,孔飞老师之前整理过,我也给挪到这个章节,供大家参考:

# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
gc时间

HELP go_goroutines Number of goroutines that currently exist.
=============================================================



TYPE go_goroutines gauge
========================



goroutine数量


HELP go_threads Number of OS threads created.
=============================================



TYPE go_threads gauge
=====================



线程数量


HELP kubeproxy_network_programming_duration_seconds \[ALPHA\] In Cluster Network Programming Latency in seconds
===============================================================================================================



TYPE kubeproxy_network_programming_duration_seconds histogram
=============================================================



service或者pod发生变化到kube-proxy规则同步完成时间指标含义较复杂,参照https://github.com/kubernetes/community/blob/master/sig-scalability/slos/network_programming_latency.md


HELP kubeproxy_sync_proxy_rules_duration_seconds \[ALPHA\] SyncProxyRules latency in seconds
============================================================================================



TYPE kubeproxy_sync_proxy_rules_duration_seconds histogram
==========================================================



规则同步耗时


HELP kubeproxy_sync_proxy_rules_endpoint_changes_pending \[ALPHA\] Pending proxy rules Endpoint changes
=======================================================================================================



TYPE kubeproxy_sync_proxy_rules_endpoint_changes_pending gauge
==============================================================



endpoint 发生变化后规则同步pending的次数


HELP kubeproxy_sync_proxy_rules_endpoint_changes_total \[ALPHA\] Cumulative proxy rules Endpoint changes
========================================================================================================



TYPE kubeproxy_sync_proxy_rules_endpoint_changes_total counter
==============================================================



endpoint 发生变化后规则同步的总次数


HELP kubeproxy_sync_proxy_rules_iptables_restore_failures_total \[ALPHA\] Cumulative proxy iptables restore failures
====================================================================================================================



TYPE kubeproxy_sync_proxy_rules_iptables_restore_failures_total counter
=======================================================================



本机上 iptables restore 失败的总次数


HELP kubeproxy_sync_proxy_rules_last_queued_timestamp_seconds \[ALPHA\] The last time a sync of proxy rules was queued
======================================================================================================================



TYPE kubeproxy_sync_proxy_rules_last_queued_timestamp_seconds gauge
===================================================================



最近一次规则同步的请求时间戳,如果比下一个指标 kubeproxy_sync_proxy_rules_last_timestamp_seconds 大很多,那说明同步 hung 住了


HELP kubeproxy_sync_proxy_rules_last_timestamp_seconds \[ALPHA\] The last time proxy rules were successfully synced
===================================================================================================================



TYPE kubeproxy_sync_proxy_rules_last_timestamp_seconds gauge
============================================================



最近一次规则同步的完成时间戳


HELP kubeproxy_sync_proxy_rules_service_changes_pending \[ALPHA\] Pending proxy rules Service changes
=====================================================================================================



TYPE kubeproxy_sync_proxy_rules_service_changes_pending gauge
=============================================================



service变化引起的规则同步pending数量


HELP kubeproxy_sync_proxy_rules_service_changes_total \[ALPHA\] Cumulative proxy rules Service changes
======================================================================================================



TYPE kubeproxy_sync_proxy_rules_service_changes_total counter
=============================================================



service变化引起的规则同步总数


HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
===============================================================================



TYPE process_cpu_seconds_total counter
======================================



利用这个指标统计cpu使用率


HELP process_max_fds Maximum number of open file descriptors.
=============================================================



TYPE process_max_fds gauge
==========================



进程可以打开的最大fd数


HELP process_open_fds Number of open file descriptors.
======================================================



TYPE process_open_fds gauge
===========================



进程当前打开的fd数


HELP process_resident_memory_bytes Resident memory size in bytes.
=================================================================



TYPE process_resident_memory_bytes gauge
========================================



统计内存使用大小


HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
======================================================================================



TYPE process_start_time_seconds gauge
=====================================



进程启动时间戳


HELP rest_client_request_duration_seconds \[ALPHA\] Request latency in seconds. Broken down by verb and URL.
============================================================================================================



TYPE rest_client_request_duration_seconds histogram
===================================================



请求 apiserver 的耗时(按照url和verb统计)


HELP rest_client_requests_total \[ALPHA\] Number of HTTP requests, partitioned by status code, method, and host.
================================================================================================================



TYPE rest_client_requests_total counter
=======================================


`请求 apiserver 的总数(按照code method host统计)
`

导入监控大盘 {#导入监控大盘}

由于上面给出的监控方案是通过 Daemonset,所以各个 Kube-Proxy 的监控数据,是通过 ident 标签来区分的,并非是通过 instance 标签来区分,从 Grafana 官网找到一个分享,地址在 这里,改造之后的大盘在 这里 导入即可使用。

赞(1)
未经允许不得转载:工具盒子 » Kubernetes-监控Kube-Proxy