51工具盒子

依楼听风雨
笑看云卷云舒,淡观潮起潮落

阿里四面,居然栽在一道排序算法上 --20210730

大家好,我是指北君。

前两天有童鞋发消息给指北君哭诉阿里四面挂了,据了解,面试过程中该童鞋表现得很不错,所以最后面试官出了道简单题"912. 排序数组"放放水,但指定使用归并排序算法,但该读者因为细节问题运行case始终过不了,最终收到感谢信。

MESA Monitor

所以在面试中,越是简单的题,就越要答好,不然会给面试官留下基础不扎实的印象。好了,回归到面试题上来,排序数组这道题本身是没有规定使用什么排序算法的,但面试官指定需要使用归并排序算法来解答,肯定是有他道理的,如果指北君是面试官,大概率也会要求读者使用归并排序,为啥呢?在解答之前我们先看看有哪些排序算法。

我们知道,排序算法有很多,大致有如下几种:

MESA Monitor

其中归并排序应该是使用的最多的几种之一,Java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。归并排序自身的优点有二,首先是因为它的平均时间复杂度低,为O(N*logN);其次它是稳定的排序,即相等元素的顺序不会改变;除了这两点优点之外,其蕴含的分治思想,是可以用来解决我们许多算法问题的,这也是面试官为什么要指定归并排序的原因。好了,废话不多说,我们接下来具体看看归并排序算法是如何实现的吧。


1. 归并排序(递归版) {#1-归并排序递归版}

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治策略,即分为两步:分与治。

  1. 分:先递归分解数组成子数组
  2. 治:将分阶段得到的子数组按顺序合并

我们来具体看看例子,假设我们现在给定一个数组:[6,3,2,7,1,3,5,4],我们需要使用归并算法对其排序,其大致过程如下图所示:

MESA Monitor

阶段可以理解为就是递归拆分子序列的过程,递归的深度为log2n。而治的阶段则是将两个子序列进行排序的过程,我们通过图解看看治阶段最后一步中是如何将[2,3,6,7]和[1,3,4,5]这两个数组合并的。

MESA Monitor

图中左边是复制的临时数组,而右边是原数组,我们将左右指针对应的值进行大小比较,将较小的那个数放入原数组中,然后将相应的指针右移。比如第一步中,我们比较左边指针L指向的4和右指针R指向的1,R指向的1小,则把1放入原数组中的第一个位置中,然后R指针向右移动。后面再继续,直到左边临时数组的元素都按序覆盖了右边的原数组。最后我们通过上图再结合源码来看看吧:

|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | class Solution { public int[] sortArray(int[] nums) { sort(0, nums.length - 1, nums); return nums; } // 分:递归二分 private void sort(int l, int r, int[] nums) { if (l >= r) return; int mid = (l + r) / 2; sort(l, mid, nums); sort(mid + 1, r, nums); merge(l, mid, r, nums); } // 治:将nums[l...mid]和nums[mid+1...r]两部分进行归并 private void merge(int l, int mid, int r, int[] nums) { int[] aux = Arrays.copyOfRange(nums, l, r + 1); int lp =l, rp = mid + 1; for (int i = lp; i <= r; i ++) { if (lp > mid) { // 如果左半部分元素已经全部处理完毕 nums[i] = aux[rp - l]; rp ++; } else if (rp > r) { // 如果右半部分元素已经全部处理完毕 nums[i] = aux[lp - l]; lp ++; } else if (aux[lp-l] > aux[rp - l]) { // 左半部分所指元素 > 右半部分所指元素 nums[i] = aux[rp - l]; rp ++; } else { // 左半部分所指元素 <= 右半部分所指元素 nums[i] = aux[lp - l]; lp ++; } } } } |

我们可以看到,分阶段的时间复杂度是logN,而合并阶段的时间复杂度是N,所以归并算法的时间复杂度是O(N*logN),因为每次合并都需要对应范围内的数组,所以其空间复杂度是O(N);


2. 归并排序(迭代版) {#2-归并排序迭代版}

上面的归并排序是通过递归二分的方法进行数组切分的,其实我们也可以通过迭代的方法来完成分这步,看下图:

MESA Monitor

其因为数组,所以我们直接通过迭代从1开始合并,其中sz就是合并的长度,这种方法也可以称为自底向上的归并,其具体的代码如下

|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | class Solution { public int[] sortArray(int[] nums) { int n = nums.length; // sz= 1,2,4,8 ... 排序 for (int sz = 1; sz < n; sz = 2) { // 对 arr[i...i+sz-1] 和 arr[i+sz...i+2*sz-1] 进行归并 for (int i = 0; i < n - sz; i += 2sz ) { merge(i, i + sz - 1, Math.min(i+sz+sz-1, n-1), nums); } } return nums; } // 和递归版一样 private void merge(int l, int mid, int r, int[] nums) { int[] aux = Arrays.copyOfRange(nums, l, r + 1); int lp =l, rp = mid + 1; for (int i = lp; i <= r; i ++) { if (lp > mid) { nums[i] = aux[rp - l]; rp ++; } else if (rp > r) { nums[i] = aux[lp - l]; lp ++; } else if (aux[lp-l] > aux[rp - l]) { nums[i] = aux[rp - l]; rp ++; } else { nums[i] = aux[lp - l]; lp ++; } } } } |


3. 总结 {#3--总结}

好了,归并算法就介绍完了,指北君再来总结一下:

归并排序是一种十分高效的排序算法,其时间复杂度为O(N*logN)。归并排序的最好,最坏的平均时间复杂度均为O(nlogn),排序后相等的元素的顺序不会改变,所以也是一种稳定的排序算法。归并排序被应用在许多地方,其java中Arrays.sort()采用了一种名为TimSort的排序算法,其就是归并排序的优化版本。

我是指北君,操千曲而后晓声,观千剑而后识器。感谢各位人才的:点赞、收藏和评论,我们下期更精彩!

赞(1)
未经允许不得转载:工具盒子 » 阿里四面,居然栽在一道排序算法上 --20210730